Abstract
This paper shows the design process of a simplified harvesting circuit for WiFi at the 2.4 GHz frequency band based on the analysis of the environment available signals. Those signals and their power level define an antenna design to maximize captured energy and select the proper number of stages for a voltage multiplier so that an impedance matching network is no longer required. With this, it is possible to maintain the harvester architecture simple without sacrificing performance. The use of supercapacitors is preferred over batteries due to their high-power capacity, the ability to deliver high peak currents, long-life cycle size, and low cost. Hence, supercapacitor availability allows to devise a novel switching scheme that employs two units that favor energy use and speed up the recharging process. The built harvester exhibits a power conversion efficiency greater than 50% under an incident signal of 0 dBm in the rectenna. The tests are carried out in an academic environment using a multi SSID router, collecting 494 mJ without requiring special modifications in the router used as an energy source.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献