Effects of Enhancement on Deep Learning Based Hepatic Vessel Segmentation

Author:

Survarachakan ShanmugapriyaORCID,Pelanis EgidijiusORCID,Khan Zohaib Amjad,Kumar Rahul PrasannaORCID,Edwin Bjørn,Lindseth Frank

Abstract

Colorectal cancer (CRC) is the third most common type of cancer with the liver being the most common site for cancer spread. A precise understanding of patient liver anatomy and pathology, as well as surgical planning based on that, plays a critical role in the treatment process. In some cases, surgeons request a 3D reconstruction, which requires a thorough analysis of the available images to be converted into 3D models of relevant objects through a segmentation process. Liver vessel segmentation is challenging due to the large variations in size and directions of the vessel structures as well as difficult contrasting conditions. In recent years, deep learning-based methods had been outperforming the conventional image analysis methods in the field of medical imaging. Though Convolutional Neural Networks (CNN) have been proved to be efficient for the task of medical image segmentation, the way of handling the image data and the preprocessing techniques play an important role in segmentation. Our work focuses on the combination of different vesselness enhancement filters and preprocessing methods to enhance the hepatic vessels prior to segmentation. In the first experiment, the effect of enhancement using individual vesselness filters was studied. In the second experiment, the effect of gamma correction on vesselness filters was studied. Lastly, the effect of fused vesselness filters over individual filters was studied. The methods were evaluated on clinical CT data. The quantitative analysis of the results in terms of different evaluation metrics from experiments can be summed up as (i) each of the filtered methods shows an improvement as compared to unenhanced with the best mean DICE score of 0.800 in comparison to 0.740 for unenhanced; (ii) applied gamma correction provides a statistically significant improvement in the performance of each filter with improvement in mean DICE of around 2%; (iii) both the fused filtered images and fused segmentation give the best results (mean DICE score of 0.818 and 0.830, respectively) with the statistically significant improvement compared to the individual filters with and without Gamma correction. The results have further been verified by qualitative analysis and hence show the importance of our proposed fused filter and segmentation approaches.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3