Mission-Conditioned Path Planning with Transformer Variational Autoencoder

Author:

Lee Kyoungho1,Im Eunji1,Cho Kyunghoon1ORCID

Affiliation:

1. Department of Information and Telecommunication Engineering, Incheon National University, Incheon 22012, Republic of Korea

Abstract

This paper introduces a novel deep learning framework for robotic path planning that addresses two primary challenges: integrating mission specifications defined through Linear Temporal Logic (LTL) and enhancing trajectory quality via cost function integration within the configuration space. Our approach utilizes a Conditional Variational Autoencoder (CVAE) to efficiently encode optimal trajectory distributions, which are subsequently processed by a Transformer network. This network leverages mission-specific information from LTL formulas to generate control sequences, ensuring adherence to LTL specifications and the generation of near-optimal trajectories. Additionally, our framework incorporates an anchor control set—a curated collection of plausible control values. At each timestep, the proposed method selects and refines a control from this set, enabling precise adjustments to achieve desired outcomes. Comparative analysis and rigorous simulation testing demonstrate that our method outperforms both traditional sampling-based and other deep-learning-based path-planning techniques in terms of computational efficiency, trajectory optimality, and mission success rates.

Publisher

MDPI AG

Reference42 articles.

1. Path planning for manipulation using experience-driven random trees;Pairet;IEEE Int. Conf. Robot. Autom.,2021

2. Prehensile Manipulation Planning: Modeling, Algorithms and Implementation;Lamiraux;IEEE Trans. Robot.,2021

3. Xu, K., Yu, H., Huang, R., Guo, D., Wang, Y., and Xiong, R. (2022, January 23–27). Efficient Object Manipulation to an Arbitrary Goal Pose: Learning-based Anytime Prioritized Planning. Proceedings of the IEEE International Conference on Robotics and Automation, Philadelphia, PA, USA.

4. Reactive path planning in a dynamic environment;Belkhouche;IEEE Trans. Robot.,2009

5. Eiffert, S., Kong, H., Pirmarzdashti, N., and Sukkarieh, S. (August, January 31). Path planning in dynamic environments using generative rnns and monte carlo tree search. Proceedings of the IEEE International Conference on Robotics and Automation, Paris, France.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3