Location Privacy Protection in Edge Computing: Co-Design of Differential Privacy and Offloading Mode

Author:

Zhang Guowei1ORCID,Zhang Shengjian1,Man Zhiyi1,Cui Chenlin1,Hu Wenli1

Affiliation:

1. School of Cyber Science and Engineering, Qufu Normal University, Qufu 273165, China

Abstract

Edge computing has emerged as an innovative paradigm that decentralizes computation to the network’s periphery, empowering edge servers to manage user-initiated complex tasks. This strategy alleviates the computational load on end-user devices and increases task processing efficiency. Nonetheless, the task offloading process can introduce a critical vulnerability, as adversaries may infer a user’s location through an analysis of their offloading mode, thereby threatening the user’s location privacy. To counteract this vulnerability, this study introduces differential privacy as a protective mechanism to obscure the user’s offloading mode, thereby safeguarding their location information. This research specifically addresses the issue of location privacy leakage stemming from the correlation between a user’s location and their task offloading ratio. The proposed strategy is based on differential privacy. It aims to increase the efficiency of offloading services and the benefits of task offloading. At the same time, it ensures privacy protection. An innovative optimization technique for task offloading that maintains location privacy is presented. Utilizing this technique, users can make informed offloading decisions, dynamically adjusting the level of obfuscation in response to the state of the wireless channel and their privacy requirements. This study substantiates the feasibility and effectiveness of the proposed mechanism through rigorous theoretical analysis and extensive empirical testing. The numerical results demonstrate that the proposed strategy can achieve a balance between offloading privacy and processing overhead.

Funder

Natural Science Foundation of Shandong Province

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3