Evolving High-Performance Computing Data Centers with Kubernetes, Performance Analysis, and Dynamic Workload Placement Based on Machine Learning Scheduling

Author:

Dakić Vedran1ORCID,Kovač Mario2,Slovinac Jurica1

Affiliation:

1. Department of Operating Systems, Algebra University, 10000 Zagreb, Croatia

2. Department of Control and Computer Engineering, Faculty of Electrical Engineering and Computing, University of Zagreb, 10000 Zagreb, Croatia

Abstract

In the past twenty years, the IT industry has moved away from using physical servers for workload management to workloads consolidated via virtualization and, in the next iteration, further consolidated into containers. Later, container workloads based on Docker and Podman were orchestrated via Kubernetes or OpenShift. On the other hand, high-performance computing (HPC) environments have been lagging in this process, as much work is still needed to figure out how to apply containerization platforms for HPC. Containers have many advantages, as they tend to have less overhead while providing flexibility, modularity, and maintenance benefits. This makes them well-suited for tasks requiring a lot of computing power that are latency- or bandwidth-sensitive. But they are complex to manage, and many daily operations are based on command-line procedures that take years to master. This paper proposes a different architecture based on seamless hardware integration and a user-friendly UI (User Interface). It also offers dynamic workload placement based on real-time performance analysis and prediction and Machine Learning-based scheduling. This solves a prevalent issue in Kubernetes: the suboptimal placement of workloads without needing individual workload schedulers, as they are challenging to write and require much time to debug and test properly. It also enables us to focus on one of the key HPC issues—energy efficiency. Furthermore, the application we developed that implements this architecture helps with the Kubernetes installation process, which is fully automated, no matter which hardware platform we use—x86, ARM, and soon, RISC-V. The results we achieved using this architecture and application are very promising in two areas—the speed of workload scheduling and workload placement on a correct node. This also enables us to focus on one of the key HPC issues—energy efficiency.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3