Frequency-Auxiliary One-Shot Domain Adaptation of Generative Adversarial Networks

Author:

Cheng Kan1,Liu Haidong2,Liu Jiayu2ORCID,Xu Bo3,Liu Xinyue2

Affiliation:

1. China Academy of Space Technology, Beijing 100039, China

2. School of Software, Dalian University of Technology, Dalian 116024, China

3. School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China

Abstract

Generative domain adaptation in a one-shot scenario involves transferring a pretrained generator from one domain to another using only a single reference image. To address the issue of extremely scarce data, existing methods resort to complex parameter constraints and leverage additional semantic knowledge from CLIP models to mitigate it. However, these methods still suffer from overfitting and underfitting issues due to the lack of prior knowledge about the domain adaptation task. In this paper, we firstly introduce the perspective of the frequency domain into the generative domain adaptation task to support the model in understanding the adaptation goals in a one-shot scenario and propose a method called frequency-auxiliary GAN (FAGAN). The FAGAN contains two core modules: a low-frequency fusion module (LFF-Module) and high-frequency guide module (HFG-Module). Specifically, the LFF-Module aims to inherit the domain-sharing information of the source module by fusing the low-frequency features of the source model. In addition, the HFG-Module is designed to select the domain-specific information of the reference image and guide the model to fit them by utilizing high-frequency guidance. These two modules are dedicated to alleviating overfitting and underfitting issues, thereby enchancing the diversity and fidelity of generated images. Extensive experimental results showed that our method leads to better quantitative and qualitative results than the existing methods under a wide range of task settings.

Funder

Liaoning Provincial Social Science Planning Fund

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3