E-DNet: An End-to-End Dual-Branch Network for Driver Steering Intention Detection

Author:

Fu Youjia1ORCID,Xue Huixia1ORCID,Fu Junsong1,Xu Zihao2

Affiliation:

1. College of Computer Science and Engineering, Chongqing University of Technology, Chongqing 400054, China

2. Liangjiang Institute of Artificial Intelligence, Chongqing University of Technology, Chongqing 401135, China

Abstract

An advanced driving assistant system (ADAS) is critical for improving traffic efficiency and ensuring driving safety. By anticipating the driver’s steering intentions in advance, the system can alert the driver in time to avoid a vehicle collision. This paper proposes a novel end-to-end dual-branch network (EDNet) that utilizes both in-cabin and out-of-cabin data. In this study, we designed an in-cabin driver intent feature extractor based on 3D residual networks and atrous convolution, which is applicable to video data and is capable of capturing a larger range of driver behavior. In order to capture the long-term dependency of temporal data, we designed the depthwise-separable max-pooling (DSMax) module and combined it with a convolutional LSTM to obtain the road environment feature extractor outside the cabin. In addition, to effectively fuse different features inside and outside the cockpit, we designed and propose the dynamic combined-feature attention fusion (D-CAF) module. EDNet employs a freeze-training method, which enables the creation of a lightweight model while simultaneously enhancing the final classification accuracy. Extensive experiments on the Brain4Cars dataset and the Zenodo dataset show that the proposed EDNet was able to recognize the driver’s steering intention up to 3 s in advance. It outperformed the existing state of the art in most driving scenarios.

Funder

Chongqing Basic Research and Frontier Exploration Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3