Beam Prediction for mmWave V2I Communication Using ML-Based Multiclass Classification Algorithms

Author:

Biliaminu Karamot Kehinde12ORCID,Busari Sherif Adeshina1ORCID,Rodriguez Jonathan13,Gil-Castiñeira Felipe2ORCID

Affiliation:

1. Instituto de Telecomunicações, Universidade de Aveiro, 3810-193 Aveiro, Portugal

2. Information Technologies Group (GTI), atlanTTic Research Center, Universidade de Vigo, 36210 Vigo, Pontevedra, Spain

3. Faculty of Computing, Engineering and Science, University of South Wales, Pontypridd CF37 1DL, UK

Abstract

Beam management is a key functionality in establishing and maintaining reliable communication in cellular and vehicular networks, and it becomes more critical at millimeter-wave (mmWave) frequencies and for high-mobility scenarios. Traditional approaches consume wireless resources and incur high beam training overheads in finding the best beam pairings, thus necessitating alternative approaches such as position-aided, vision-aided, or, more generally, sensing-aided beam prediction approaches. Current systems are also leveraging artificial intelligence/machine learning (ML) to optimize the beam management procedures; however, the majority of the proposed ML frameworks have been applied to synthetic datasets, leading to overestimated performances. In this work, in the context of vehicle-to-infrastructure (V2I) communication and using the real-world DeepSense6G experimental datasets, we investigate the performance of four ML algorithms on beam prediction accuracy for mmWave V2I scenarios. We compare the performance of K-nearest neighbour (KNN), support vector machine (SVM), decision tree (DT), and naïve Bayes (NB) algorithms on position-aided beam prediction accuracy and related metrics such as precision, recall, specificity, and F1-score. The impacts of different beam codebook sizes and dataset split ratios on five different scenarios’ datasets were investigated, independently and collectively. Confusion matrices and area under the receiver operating characteristic curves were also employed to visualize the (mis)classification statistics of the considered ML algorithms. The results show that SVM outperforms the other three algorithms, for the most part, on the scenario-per-scenario cases. However, for the combined scenario with larger data samples, DT outperforms the other three algorithms for both the different codebook sizes and data split ratios. The results also show comparable performance for the different data split ratios considered for the different algorithms. However, with respect to the codebook sizes, the results show that the higher the codebook size, the lower the beam prediction accuracy. With the best accuracy results around 70% for the combined scenario in this study, multi-modal sensing-aided approaches can be explored to increase the beam prediction performance, although at the expense of higher system complexity when compared to the position-aided approach considered in this study.

Funder

Fundação para a Ciência e a Tecnologia (FCT-Portugal)/MEC

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3