An Improved Lightweight YOLOv5s-Based Method for Detecting Electric Bicycles in Elevators

Author:

Zhang Ziyuan1ORCID,Yang Xianyu2ORCID,Wu Chengyu2ORCID

Affiliation:

1. School of Computer Science and Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China

2. School of Information Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China

Abstract

The increase in fire accidents caused by indoor charging of electric bicycles has raised concerns among people. Monitoring EBs in elevators is challenging, and the current object detection method is a variant of YOLOv5, which faces problems with calculating the load and detection rate. To address this issue, this paper presents an improved lightweight method based on YOLOv5s to detect EBs in elevators. This method introduces the MobileNetV2 module to achieve the lightweight performance of the model. By introducing the CBAM attention mechanism and the Bidirectional Feature Pyramid Network (BiFPN) into the YOLOv5s neck network, the detection precision is improved. In order to better verify that the model can be deployed at the edge of an elevator, this article deploys it using the Raspberry Pi 4B embedded development board and connects it to a buzzer for application verification. The experimental results demonstrate that the model parameters of EBs are reduced by 58.4%, the computational complexity is reduced by 50.6%, the detection precision reaches 95.9%, and real-time detection of electric vehicles in elevators is achieved.

Funder

“Pioneer” R&D Programs of Zhejiang Province

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3