A Novel Feature Selection Strategy Based on the Harris Hawks Optimization Algorithm for the Diagnosis of Cervical Cancer

Author:

Dong Minhui1,Wang Yu1,Todo Yuki2ORCID,Hua Yuxiao1

Affiliation:

1. Division of Electrical Engineering and Computer Science, Graduate School of Natural Science & Technology, Kanazawa University, Kakuma-Machi, Kanazawa 920-1192, Japan

2. Faculty of Electrical, Information and Communication Engineering, Kanazawa University, Kakuma-Machi, Kanazawa 920-1192, Japan

Abstract

Cervical cancer is the fourth most commonly diagnosed cancer and one of the leading causes of cancer-related deaths among females worldwide. Early diagnosis can greatly increase the cure rate for cervical cancer. However, due to the need for substantial medical resources, it is difficult to implement in some areas. With the development of machine learning, utilizing machine learning to automatically diagnose cervical cancer has currently become one of the main research directions in the field. Such an approach typically involves a large number of features. However, a portion of these features is redundant or irrelevant. The task of eliminating redundant or irrelevant features from the entire feature set is known as feature selection (FS). Feature selection methods can roughly be divided into three types, including filter-based methods, wrapper-based methods, and embedded-based methods. Among them, wrapper-based methods are currently the most commonly used approach, and many researchers have demonstrated that these methods can reduce the number of features while improving the accuracy of diagnosis. However, this method still has some issues. Wrapper-based methods typically use heuristic algorithms for FS, which can result in significant computational time. On the other hand, heuristic algorithms are often sensitive to parameters, leading to instability in performance. To overcome this challenge, a novel wrapper-based method named the Binary Harris Hawks Optimization (BHHO) algorithm is proposed in this paper. Compared to other wrapper-based methods, the BHHO has fewer hyper-parameters, which contributes to better stability. Furthermore, we have introduced a rank-based selection mechanism into the algorithm, which endows BHHO with enhanced optimization capabilities and greater generalizability. To comprehensively evaluate the performance of the proposed BHHO, we conducted a series of experiments. The experimental results show that the proposed BHHO demonstrates better accuracy and stability compared to other common wrapper-based FS methods on the cervical cancer dataset. Additionally, even on other disease datasets, the proposed algorithm still provides competitive results, proving its generalizability.

Funder

JST SPRING

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3