Design and Implementation of Lightweight Certificateless Secure Communication Scheme on Industrial NFV-Based IPv6 Virtual Networks

Author:

Ashraf Zeeshan1ORCID,Sohail Adnan2,Iqbal Muddesar3

Affiliation:

1. Department of Computer Science, The University of Chenab, Gujrat 50700, Pakistan

2. Department of Computing & Technology, IQRA University, Islamabad Campus, Islamabad 44310, Pakistan

3. Renewable Energy Laboratory, College of Engineering, Prince Sultan University, Riyadh 11586, Saudi Arabia

Abstract

With the fast growth of the Industrial Internet of Everything (IIoE), computing and telecommunication industries all over the world are moving rapidly towards the IPv6 address architecture, which supports virtualization architectures such as Network Function Virtualization (NFV). NFV provides networking services like routing, security, storage, etc., through software-based virtual machines. As a result, NFV reduces equipment costs. Due to the increase in applications on Industrial Internet of Things (IoT)-based networks, security threats have also increased. The communication links between people and people or from one machine to another machine are insecure. Usually, critical data are exchanged over the IoE, so authentication and confidentiality are significant concerns. Asymmetric key cryptosystems increase computation and communication overheads. This paper proposes a lightweight and certificateless end-to-end secure communication scheme to provide security services against replay attacks, man-in-the-middle (MITM) attacks, and impersonation attacks with low computation and communication overheads. The system is implemented on Linux-based Lubuntu 20.04 virtual machines using Java programming connected to NFV-based large-scale hybrid IPv4-IPv6 virtual networks. Finally, we compare the performance of our proposed security scheme with existing schemes based on the computation and communication costs. In addition, we measure and analyze the performance of our proposed secure communication scheme over NFV-based virtualized networks with regard to several parameters like end-to-end delay and packet loss. The results of our comparison with existing security schemes show that our proposed security scheme reduces the computation cost by 38.87% and the communication cost by 26.08%.

Funder

Research, Development, and Innovation Authority (RDIA), Saudi Arabia

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3