Efficient and Lightweight Neural Network for Hard Hat Detection

Author:

He Chenxi12,Tan Shengbo12,Zhao Jing12,Ergu Daji12,Liu Fangyao12,Ma Bo12,Li Jianjun3

Affiliation:

1. College of Electronic and Information, Southwest Minzu University, Chengdu 610093, China

2. Key Laboratory of Electronic and Information Engineering, State Ethnic Affairs Commission, Chengdu 610041, China

3. College of Information, Sichuan Vocational College of Finance and Economics, Chengdu 610101, China

Abstract

Electric power operation, as one of the key fields in the world, faces particularly prominent safety issues. Ensuring the safety of operators has become the most fundamental requirement in power operation. However, there are some safety hazards in power construction. These hazards are mainly due to weak safety awareness among staff and the failure to standardize the wearing of safety helmets. In order to effectively address this situation, technical means such as video surveillance technology and computer vision technology can be utilized to monitor whether staff are wearing helmets and provide timely feedback. Such measures will greatly enhance the safety level of power operation. This paper proposes an improved lightweight helmet detection algorithm named YOLO-M3C. The algorithm first replaces the YOLOv5s backbone network with MobileNetV3, successfully reducing the model size from 13.7 MB to 10.2 MB, thereby increasing the model’s detection speed from 42.0 frames per second to 55.6 frames per second. Then, the CA attention mechanism is introduced into the backbone network to enhance the feature extraction capability of the model. Finally, in order to further improve the detection recall rate and accuracy of the model, a knowledge distillation of the model was carried out. The experimental results show that, compared with the original YOLOv5s algorithm, the average accuracy of the improved YOLO-M3C algorithm is improved by 0.123, and the recall rate is the same. These results verify that the algorithm YOLO-M3C has excellent performance in target detection and recognition, which can improve accuracy and confidence, while reducing false detection and missing detection, and effectively meet the needs of helmet-wearing detection.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3