Boundary Segmentation of Vascular Images in Fourier Domain Doppler Optical Coherence Tomography Based on Deep Learning

Author:

Wu Chuanchao1ORCID,Wang Zhibin2,Xue Peng2,Liu Wenyan1

Affiliation:

1. School of Information and Communication Engineering, North University of China, Taiyuan 030051, China

2. Provincial Photoelectric Information and Instrument Engineering Technical Research Center, North University of China, Taiyuan 030051, China

Abstract

Microscopic and ultramicroscopic vascular sutures are indispensable in surgical procedures such as arm transplantation and finger reattachment. The state of the blood vessels after suturing, which may feature vascular patency, narrowness, and blockage, determines the success rate of the operation. If we can take advantage of the golden window of opportunity after blood vessel suture and before muscle tissue suture to achieve an accurate and objective assessment of blood vessel status, this will not only reduce medical costs but will also offer social benefits. Doppler optical coherence tomography enables the high-speed, high-resolution imaging of biological tissues, especially microscopic and ultramicroscopic blood vessels. By using Doppler optical coherence tomography to image the sutured blood vessels, a three-dimensional structure of the blood vessels and blood flow information can be obtained. By extracting the contour of the blood vessel wall and the contour of the blood flow area, the three-dimensional shape of the blood vessel can be reconstructed in three dimensions, providing parameter support for the assessment of blood vessel status. In this work, we propose a neural network-based multi-classification deep learning model that can automatically and simultaneously extract blood vessel boundaries from Doppler OCT vessel intensity images and the contours of blood flow regions from corresponding Doppler OCT vessel phase images. Compared to the traditional random walk segmentation algorithm and cascade neural network method, the proposed model can produce the vessel boundary from the intensity image and the lumen area boundary from the corresponding phase image simultaneously, achieving an average testing segmentation accuracy of 0.967 and taking, on average, 0.63 s. This method can realize system integration more easily and has great potential for clinical evaluations. It is expected to be applied to the evaluation of microscopic and ultramicroscopic vascular status in microvascular anastomosis.

Funder

Fundamental Research Program of Shanxi Province

Fund Program for the Scientific Activities of Selected Retumed Overseas Professionals in Shanxi Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3