Noise Immunity-Enhanced Capacitance Readout Circuit for Human Interaction Detection in Human Body Communication Systems

Author:

Choi Seong-Wook,Seong Kiho,Lee Sukho,Baek Kwang-Hyun,Shim Yong

Abstract

Recent healthcare systems based on human body communication (HBC) require human interaction sensors. Due to the conductive properties of the human body, capacitive sensors are most widely known and are applied to many electronic gadgets for communication. Capacitance fluctuations due to the fact of human interaction are typically converted to voltage levels using some analog circuits, and then analog-to-digital converters (ADCs) are used to convert analog voltages into digital codes for further processing. However, signals detected by human touch naturally contain large noise, and an active analog filter that consumes a lot of power is required. In addition, the inclusion of ADCs causes the system to use a large area and amount of power. The proposed structure adopts a digital-based moving average filter (MAF) that can effectively operate as a low-pass filter (LPF) instead of a large-area and high-power consumption analog filter. In addition, the proposed ∆C detection algorithm can distinguish between human interaction and object interaction. As a result, two individual digital signals of touch/release and movement can be generated, and the type and strength of the touch can be effectively expressed without the help of an ADC. The prototype chip of the proposed capacitive sensing circuit was fabricated with commercial 65 nm CMOS process technology, and its functionality was fully verified through testing and measurement. The prototype core occupies an active area of 0.0067 mm2, consumes 7.5 uW of power, and has a conversion time of 105 ms.

Funder

Chung-Ang University

Korea Government

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3