Abstract
Polar codes are the first family of error-correcting codes that can achieve channel capacity. Among the known decoding algorithms, Successive-Cancellation List (SCL) decoding supported by a Cyclic Redundancy Check (CRC) shows the best error-correction performance at the cost of a high decoding complexity. The decoding of Rate-1 nodes belongs to the most complex tasks in SCL decoding. In this paper, we present a new algorithm that largely reduces the number of considered candidates in a Rate-1 node and generate all required candidates in parallel. For this purpose, we use a partial order of the candidate paths to prove that only a specified number of candidates needs to be considered. Further complexity reductions are achieved by an extended threshold-based path exclusion scheme at the cost of negligible error-correction performance loss. We present detailed Application-Specific Integrated Circuit (ASIC) implementation data on a 28 nm Fully Depleted Silicon on Insulator (FD-SOI) Complementary Metal-Oxide-Semiconductor (CMOS) technology for decoders with code length 128. We show that the new decoders outperform state-of-the-art reference decoders. For list size 8, improvements of up to 158.8% and 62.5% in area and energy efficiency are observed, respectively.
Funder
German Federal Ministry for Economic Affairs and Energy
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献