Cost and Latency Optimized Edge Computing Platform

Author:

Pelle IstvánORCID,Szalay MárkORCID,Czentye JánosORCID,Sonkoly BalázsORCID,Toka LászlóORCID

Abstract

Latency-critical applications, e.g., automated and assisted driving services, can now be deployed in fog or edge computing environments, offloading energy-consuming tasks from end devices. Besides the proximity, though, the edge computing platform must provide the necessary operation techniques in order to avoid added delays by all means. In this paper, we propose an integrated edge platform that comprises orchestration methods with such objectives, in terms of handling the deployment of both functions and data. We show how the integration of the function orchestration solution with the adaptive data placement of a distributed key–value store can lead to decreased end-to-end latency even when the mobility of end devices creates a dynamic set of requirements. Along with the necessary monitoring features, the proposed edge platform is capable of serving the nomad users of novel applications with low latency requirements. We showcase this capability in several scenarios, in which we articulate the end-to-end latency performance of our platform by comparing delay measurements with the benchmark of a Redis-based setup lacking the adaptive nature of data orchestration. Our results prove that the stringent delay requisites necessitate the close integration that we present in this paper: functions and data must be orchestrated in sync in order to fully exploit the potential that the proximity of edge resources enables.

Funder

National Research, Development and Innovation Office

Hungarian Academy of Sciences

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference62 articles.

1. A Survey from Real-Time to Near Real-Time Applications in Fog Computing Environments

2. Amazon Web Serviceshttps://aws.amazon.com

3. Google Cloud: Google Kubernetes Engine (GKE as Caas) and Google Cloud Functions (FaaS)https://cloud.google.com/

4. Microsoft Azure: Azure Kubernetes Service (AKS as CaaS) and Azure Functions (FaaS)https://azure.microsoft.com/

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3