Simulated Hough Transform Model Optimized for Straight-Line Recognition Using Frontier FPGA Devices

Author:

Gabrielli AlessandroORCID,Alfonsi Fabrizio,Del Corso FrancescaORCID

Abstract

The use of the Hough transforms to identify shapes or images has been extensively studied in the past using software for artificial intelligence applications. In this article, we present a generalization of the goal of shape recognition using the Hough transform, applied to a broader range of real problems. A software simulator was developed to generate input patterns (straight-lines) and test the ability of a generic low-latency system to identify these lines: first in a clean environment with no other inputs and then looking for the same lines as ambient background noise increases. In particular, the paper presents a study to optimize the implementation of the Hough transform algorithm in programmable digital devices, such as FPGAs. We investigated the ability of the Hough transform to discriminate straight-lines within a vast bundle of random lines, emulating a noisy environment. In more detail, the study follows an extensive investigation we recently conducted to recognize tracks of ionizing particles in high-energy physics. In this field, the lines can represent the trajectories of particles that must be immediately recognized as they are created in a particle detector. The main advantage of using FPGAs over any other component is their speed and low latency to investigate pattern recognition problems in a noisy environment. In fact, FPGAs guarantee a latency that increases linearly with the incoming data, while other solutions increase latency times more quickly. Furthermore, HT inherently adapts to incomplete input data sets, especially if resolutions are limited. Hence, an FPGA system that implements HT is inefficient for small sets of input data but becomes more cost-effective as the size of the input data increases. The document first presents an example that uses a large Accumulator consisting of 1100 × 600 Bins and several sets of input data to validate the Hough transform algorithm as random noise increases to 80% of input data. Then, a more specifically dedicated input set was chosen to emulate a real situation where a Xilinx UltraScale+ was to be used as the final target device. Thus, we have reduced the Accumulator to 280 × 280 Bins using a clock signal at 250 MHz and a few tens input points. Under these conditions, the behavior of the firmware matched the software simulations, confirming the feasibility of the HT implementation on FPGA.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference19 articles.

1. Hough transform applications to particle detection of granular physics experiments;Tang;J. Comput. Inf. Syst.,2013

2. LHC Machine

3. Performance of the LHCb outer tracker;J. Instrum.,2014

4. CMS tracking performance results from early LHC operation

5. First evaluation of the CPU, GPGPU and MIC architectures for real time particle tracking based on Hough transform at the LHC

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3