Author:
Yang Dawei,Li Xinlei,Qi Lizhe,Zhang Wenqiang,Jiang Zhe
Abstract
Deep neural networks (DNNs) are widely used in many artificial intelligence applications; many specialized DNN-inference accelerators have been proposed. However, existing DNN accelerators rely heavily on certain types of DNN operations (such as Conv, FC, and ReLU, etc.), which are either less used or likely to become out of date in future, posing challenges of flexibility and compatibility to existing work. This paper designs a flexible DNN accelerator from a more generic perspective rather than speeding up certain types of DNN operations. Our proposed Nebula exploits the width property of DNNs and gains a significant improvement in system throughput and energy efficiency over multi-branch architectures. Nebula is a first-of-its-kind framework for multi-branch DNNs.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献