Applications of Federated Learning; Taxonomy, Challenges, and Research Trends

Author:

Shaheen Momina,Farooq Muhammad ShoaibORCID,Umer TariqORCID,Kim Byung-SeoORCID

Abstract

The federated learning technique (FL) supports the collaborative training of machine learning and deep learning models for edge network optimization. Although a complex edge network with heterogeneous devices having different constraints can affect its performance, this leads to a problem in this area. Therefore, some research can be seen to design new frameworks and approaches to improve federated learning processes. The purpose of this study is to provide an overview of the FL technique and its applicability in different domains. The key focus of the paper is to produce a systematic literature review of recent research studies that clearly describes the adoption of FL in edge networks. The search procedure was performed from April 2020 to May 2021 with a total initial number of papers being 7546 published in the duration of 2016 to 2020. The systematic literature synthesizes and compares the algorithms, models, and frameworks of federated learning. Additionally, we have presented the scope of FL applications in different industries and domains. It has been revealed after careful investigation of studies that 25% of the studies used FL in IoT and edge-based applications and 30% of studies implement the FL concept in the health industry, 10% for NLP, 10% for autonomous vehicles, 10% for mobile services, 10% for recommender systems, and 5% for FinTech. A taxonomy is also proposed on implementing FL for edge networks in different domains. Moreover, another novelty of this paper is that datasets used for the implementation of FL are discussed in detail to provide the researchers an overview of the distributed datasets, which can be used for employing FL techniques. Lastly, this study discusses the current challenges of implementing the FL technique. We have found that the areas of medical AI, IoT, edge systems, and the autonomous industry can adapt the FL in many of its sub-domains; however, the challenges these domains can encounter are statistical heterogeneity, system heterogeneity, data imbalance, resource allocation, and privacy.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference198 articles.

1. Data Age 2025: The Digitization of the World From Edge to Core;Reinsel;Int. Data Corp.,2018

2. Dispersed Federated Learning: Vision, Taxonomy, and Future Directions

3. Emerging Trends in Federated Learning: From Model Fusion to Federated X Learning;Ji;arXiv,2021

4. Advances and Open Problems in Federated Learning;Kairouz;arXiv,2021

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3