A Parallel Deep Reinforcement Learning Framework for Controlling Industrial Assembly Lines

Author:

Tortorelli AndreaORCID,Imran MuhammadORCID,Delli Priscoli FrancescoORCID,Liberati FrancescoORCID

Abstract

Decision-making in a complex, dynamic, interconnected, and data-intensive industrial environment can be improved with the assistance of machine-learning techniques. In this work, a complex instance of industrial assembly line control is formalized and a parallel deep reinforcement learning approach is presented. We consider an assembly line control problem in which a set of tasks (e.g., vehicle assembly tasks) needs to be planned and controlled during their execution, with the aim of optimizing given key performance criteria. Specifically, the aim will be that of planning the task in order to minimize the total time taken to execute all the tasks (also called cycle time). Tasks run on workstations in the assembly line. To run, tasks need specific resources. Therefore, the tackled problem is that of optimally mapping tasks and resources to workstations, and deciding the optimal execution times of the tasks. In doing so, several constraints need to be respected (e.g., precedence constraints among the tasks, constraints on needed resources to run tasks, deadlines, etc.). The proposed approach uses deep reinforcement learning to learn a tasks/resources mapping policy that is effective in minimizing the resulting cycle time. The proposed method allows us to explicitly take into account all the constraints, and, once training is complete, can be used in real time to dynamically control the execution of tasks. Another motivation for the proposed work is in the ability of the used method to also work in complex scenarios, and in the presence of uncertainties. As a matter of fact, the use of deep neural networks allows for learning the model of the assembly line problem, in contrast with, e.g., optimization-based techniques, which require explicitly writing all the equations of the model of the problem. In order to speed up the training phase, we adopt a learning scheme in which more agents are trained in parallel. Simulations show that the proposed method can provide effective real-time decision support to industrial operators for scheduling and rescheduling activities, achieving the goal of minimizing the total tasks’ execution time.

Funder

European Commission

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3