Evaporation Forecasting through Interpretable Data Analysis Techniques

Author:

Garrido M. CarmenORCID,Cadenas José M.ORCID,Bueno-Crespo AndrésORCID,Martínez-España RaquelORCID,Giménez José G.ORCID,Cecilia José M.ORCID

Abstract

Climate change is increasing temperatures and causing periods of water scarcity in arid and semi-arid climates. The agricultural sector is one of the most affected by these changes, having to optimise scarce water resources. An important phenomenon within the water cycle is the evaporation from water reservoirs, which implies a considerable amount of water lost during warmer periods of the year. Indeed, evaporation rate forecasting can help farmers grow crops more sustainably by managing water resources more efficiently in the context of precision agriculture. In this work, we expose an interpretable machine learning approach, based on a multivariate decision tree, to forecast the evaporation rate on a daily basis using data from an Internet of Things (IoT) infrastructure, which is deployed on a real irrigated plot located in Murcia (southeastern Spain). The climate data collected feed the models that provide a forecast of evaporation and a summary of the parameters involved in this process. Finally, the results of the interpretable presented model are validated with the best literature models for evaporation rate prediction, i.e., Artificial Neural Networks, obtaining results very similar to those obtained for them, reaching up to 0.85R2 and 0.6MAE. Therefore, in this work, a double objective is faced: to maintain the performance obtained by the models most frequently used in the problem while maintaining the interpretability of the knowledge captured in it, which allows better understanding the problem and carrying out appropriate actions.

Funder

Ministerio de Ciencia e Innovación

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3