Analysis and Design of a Wideband Low-Noise Amplifier with Bias and Parasitic Parameters Derived Wide Bandpass Matching Networks

Author:

Zhao Jinxiang,Wang Feng,Yu Hanchao,Zhang ShengliORCID,Wang Kuisong,Liu Chang,Wan Jing,Liang Xiaoxin,Yan Yuepeng

Abstract

This paper proposes a 110% relative bandwidth (RBW) low-noise amplifier (LNA) for broadband receivers with flat gain, low noise and high linearity. Bias and parasitic parameters derived wide bandpass (BPDWB) matching networks and a cascode with dual feedbacks are introduced for broadband performance. Matching network design procedures are demonstrated, and results show that the frequency response of the network fits the target impedance well from 1 GHz to 3.5 GHz. The proposed BPDWB network improves the design efficiency and enhances the prediction accuracy of impedance matching. The proposed LNA in 0.25 μm GaAs pseudomorphic high electron mobility transistor (GaAs pHEMT) technology realizes a minimum NF of 0.45 dB at 1.6 GHz where the NF is less than 0.55 dB within the operating frequency band. A flat gain of 22.5–25.2 dB is achieved with the input voltage standing wave ratio (VSWR) below 1.22 and output VSWR less than 2.5. In addition, the proposed LNA has good linearity where the output third-order intercept point (OIP3) is better than +31.5 dBm, and the output 1 dB compression point (OP1dB) is better than +19 dBm over the wide frequency range.

Funder

National Key R&D Program

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evaluation of Contactless Identification Card Immunity against a Current Pulse in an Adjacent Conductor;Electronics;2023-12-03

2. A 0.8-1.8 GHz Low Noise Amplifier for 5G Application;2022 7th International Conference on Integrated Circuits and Microsystems (ICICM);2022-10-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3