Author:
Liang Shuang,Zhu Yun,Li Hao
Abstract
The joint integrated probabilistic data association (JIPDA) algorithm is widely used for the automatic tracking of multiple targets, but it has the well-known problem of track coalescence. By optimizing the posterior density, the accuracy of the target state estimation can be improved. Motivated by this idea, we developed a novel evolutionary optimization based joint integrated probabilistic data association (EOJIPDA) filter to overcome the coalescence problem of the JIPDA filter. The trace for the covariance matrix of the posterior density is used as the objective function for the above optimization problem. It is shown that the accuracy of the target state estimation can be improved by reducing the trace. Evolutionary optimization was employed to minimize the trace and optimize the posterior density. More specifically, we enumerated all the possible permutations of the targets and assign a unique index to each permutation. The resulting indices were randomly assigned to all possible association hypothesis events. Each assignment indicated one possible gene in the evolutionary algorithm. This process was repeated several times to arrive at the initial population. An illustrative example shows that the EOJIPDA filter can effectively improve the accuracy of state estimation. Numerical studies are presented for two challenging multi-target tracking scenarios with clutter and missed detections. The experimental results demonstrate that the EOJIPDA filter provides better tracking accuracy than traditional coalescence-avoiding methods.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Shaanxi Province
Fundamental Research Funds for the Central Universities
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献