Abstract
With the increased resolution and frame rates of video recordings, in combination with the current evolution towards video-on-demand streaming services and the user expecting ubiquitous wireless connectivity, it is necessary to design wireless communication systems that allow high-rate data transfer. The large bandwidths that are available in the mmWave frequency band allow such high data rates. In this paper, we provide an experimental and simulated indoor residential radio channel model at V-band frequencies and perform packet error rate and throughput measurements at 60 GHz using IEEE 802.11ad transceivers. We compare the path loss and throughput measurements to simulations using a network performance prediction tool. The path loss measurement results using an omnidirectional transmit antenna correspond well to generic indoor mmWave channel models. Double-directional path loss measurements show that generic models underestimate path loss of non-Line-of-Sight (NLOS) links. A ray-launching algorithm is designed and validated, and used for IEEE 802.11ad throughput estimation based on link budget calculations. The link budget underestimates the achieved throughput, when comparing to adaptive-rate MCS selection in a commercial transceiver, based on the measured signal-to-noise ratio. Packet error rate measurements confirm that, even for NLOS links, throughputs exceeding 1 Gbps are possible.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献