V-Band Channel Modeling, Throughput Measurements, and Coverage Prediction for Indoor Residential Environments

Author:

De Beelde BrechtORCID,Almarcha AndrésORCID,Plets DavidORCID,Joseph WoutORCID

Abstract

With the increased resolution and frame rates of video recordings, in combination with the current evolution towards video-on-demand streaming services and the user expecting ubiquitous wireless connectivity, it is necessary to design wireless communication systems that allow high-rate data transfer. The large bandwidths that are available in the mmWave frequency band allow such high data rates. In this paper, we provide an experimental and simulated indoor residential radio channel model at V-band frequencies and perform packet error rate and throughput measurements at 60 GHz using IEEE 802.11ad transceivers. We compare the path loss and throughput measurements to simulations using a network performance prediction tool. The path loss measurement results using an omnidirectional transmit antenna correspond well to generic indoor mmWave channel models. Double-directional path loss measurements show that generic models underestimate path loss of non-Line-of-Sight (NLOS) links. A ray-launching algorithm is designed and validated, and used for IEEE 802.11ad throughput estimation based on link budget calculations. The link budget underestimates the achieved throughput, when comparing to adaptive-rate MCS selection in a commercial transceiver, based on the measured signal-to-noise ratio. Packet error rate measurements confirm that, even for NLOS links, throughputs exceeding 1 Gbps are possible.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference63 articles.

1. Multiple Gigabit Wireless Systems in Frequencies around 60 GHz,2018

2. Analysis of 60-GHz In-street Backhaul Channel Measurements and LiDAR Ray-based Simulations

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3