An Intelligent Data Analysis System Combining ARIMA and LSTM for Persistent Organic Pollutants Concentration Prediction

Author:

Yu Lu,Wu ChunxueORCID,Xiong Neal N.ORCID

Abstract

Persistent Organic Pollutants (POPs) are toxic and difficult to degrade, which will cause huge damages to human life and the ecological environment. Therefore, based on historical measurements, it is important to use intelligent methods and data analysis technologies to build an intelligent prediction system to accurately predict the future POPs concentrations in advance. This work has extremely important significance for policy formulation, human health, environmental protection and the sustainable development of society. Since the POPs concentrations sequence contains both linear and nonlinear components, this paper proposes an intelligent data analysis system combining autoregressive integrated moving average (ARIMA) and long short-term memory network (LSTM) to analyze and predict the POPs concentrations in the Great Lakes region. ARIMA is used to capture linear components while LSTM is used to process nonlinear components, which overcomes the deficiency of single models. Moreover, a one-class SVM algorithm is used to detect outliers during data preprocessing. Bayesian information criterion and grid search methods are also used to obtain the optimal parameter combinations of ARIMA and LSTM, respectively. This paper compares our intelligent data analysis system with other single baseline models by using multiple evaluation indicators and finds that our system has the smallest MAE, RMSE and SMAPE values on all datasets. Meanwhile, our system can predict the trends of concentration changes well and the predicted values are closer to true values, which prove that it can effectively improve the precision of prediction. Finally, our system is used to predict concentration values of sites in the Great Lakes region in the next 5 years. The predicted concentrations present a large fluctuation trend in each year, but the overall trend is downward.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Shanghai Science and Technology Innovation Action Plan Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3