Abstract
Novel resistant hierarchical fuzzy neural networks are proposed in this study and their deep learning problems are investigated. These fuzzy neural networks can be used to model complex controlled plants and can also be used as fuzzy controllers. In general, real-world data are usually contaminated by outliers. These outliers may have undesirable or unpredictable influences on the final learning machines. The correlations between the target and each of the predictors are utilized to partition input variables into groups so that each group becomes the input variables of a fuzzy system in each level of the hierarchical fuzzy neural network. In order to enhance the resistance of the learning machines, we use the least trimmed squared error as the cost function. To test the resistance of learning machines to adverse effects of outliers, we add at the output node some noise from three different types of distributions, namely, normal, Laplace, and uniform distributions. Real-world datasets are used to compare the performances of the proposed resistant hierarchical fuzzy neural networks, resistant densely connected artificial neural networks, and densely connected artificial neural networks without noise.
Funder
Ministry of Science and Technology, Taiwan
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献