Abstract
Radiation effects can induce severe and diverse soft errors in digital circuits and systems. A Xilinx commercial 16 nm FinFET static random-access memory (SRAM)-based field-programmable gate array (FPGA) was selected to evaluate the radiation sensitivity and promote the space application of FinFET ultra large-scale integrated circuits (ULSI). Picosecond pulsed laser and high energy heavy ions were employed for irradiation. Before the tests, SRAM-based configure RAMs (CRAMs) were initialized and configured. The 100% embedded block RAMs (BRAMs) were utilized based on the Vivado implementation of the compiled hardware description language. No hard error was observed in both the laser and heavy-ion test. The thresholds for laser-induced single event upset (SEU) were ~3.5 nJ, and the SEU cross-sections were correlated positively to the laser’s energy. Multi-bit upsets were measured in heavy-ion and high-energy laser irradiation. Moreover, latch-up and functional interrupt phenomena were common, especially in the heavy-ion tests. The single event effect results for the 16 nm FinFET process were significant, and some radiation tolerance strategies were required in a radiation environment.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献