A Feature Integrated Saliency Estimation Model for Omnidirectional Immersive Images

Author:

Mazumdar PramitORCID,Lamichhane Kamal,Carli MarcoORCID,Battisti FedericaORCID

Abstract

Omnidirectional, or 360°, cameras are able to capture the surrounding space, thus providing an immersive experience when the acquired data is viewed using head mounted displays. Such an immersive experience inherently generates an illusion of being in a virtual environment. The popularity of 360° media has been growing in recent years. However, due to the large amount of data, processing and transmission pose several challenges. To this aim, efforts are being devoted to the identification of regions that can be used for compressing 360° images while guaranteeing the immersive feeling. In this contribution, we present a saliency estimation model that considers the spherical properties of the images. The proposed approach first divides the 360° image into multiple patches that replicate the positions (viewports) looked at by a subject while viewing a 360° image using a head mounted display. Next, a set of low-level features able to depict various properties of an image scene is extracted from each patch. The extracted features are combined to estimate the 360° saliency map. Finally, bias induced during image exploration and illumination variation is fine-tuned for estimating the final saliency map. The proposed method is evaluated using a benchmark 360° image dataset and is compared with two baselines and eight state-of-the-art approaches for saliency estimation. The obtained results show that the proposed model outperforms existing saliency estimation models.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Ablation Study on 360-Degree Saliency Estimation;2023 International Symposium on Image and Signal Processing and Analysis (ISPA);2023-09-18

2. No-Reference Light Field Image Quality Assessment Exploiting Saliency;IEEE Transactions on Broadcasting;2023-09

3. A survey on visual quality assessment methods for light fields;Signal Processing: Image Communication;2023-01

4. Exploiting saliency in quality assessment for light field images;2021 Picture Coding Symposium (PCS);2021-06

5. Delivery of omnidirectional video using saliency prediction and optimal bitrate allocation;Signal, Image and Video Processing;2020-09-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3