Analysis of Area-Efficiency vs. Unrolling for eSTREAM Hardware Portfolio Stream Ciphers

Author:

Alharbi Fares,Hameed Muhammad Khurram,Chowdhury Anusha,Khalid Ayesha,Chattopadhyay Anupam,Javed Ibrahim Tariq

Abstract

The demand for low resource devices has increased rapidly due to the advancements in Internet-of-things applications. These devices operate in environments that have limited resources. To ensure security, stream ciphers are implemented on hardware due to their speed and simplicity. Amongst different stream ciphers, the eSTREAM ciphers stand due to their frugal implementations. This work probes the effect of unrolling on the efficiency of eSTREAM ciphers, including Trivium, Grain (Grain 80 and Grain 128) and MICKEY (MICKEY 2.0 and MICKEY-128 2.0). It addresses the question of optimal unrolling for designing high-performance stream ciphers. The increase in the area consumption is also bench-marked. The analysis is conducted to identify efficient design principles for ciphers. We experimentally show that the resulting performance after unrolling may disagree with the theoretical prediction when the effects of technology library are considered. We report pre-layout synthesis results on 65 and 130 nm ASIC technology as well as synthesis results for Xilinx FPGA platform in support of our claim. Based on our findings, cipher design and implementation suggestions are proposed to aid hardware designers. Furthermore, we explore why and where area-efficiency for these ciphers saturate.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference30 articles.

1. Stream cipher designs: a review

2. New sTream Cipher Designs: The eSTREAM Finalists;Robshaw,2008

3. An AEAD variant of the grain stream cipher;Hell,2019

4. Grain-128a: a new version of Grain-128 with optional authentication

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Implementaion of MICKEY Cipher in Securing Constrained Devices Based on LoRa;Proceedings of the 8th International Conference on Sustainable Information Engineering and Technology;2023-10-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3