Acceleration of the Multi-Level Fast Multipole Algorithm Using K-Means Clustering

Author:

Yun Dal-jaeORCID,Jung Haewon,Kang Hoon,Yang Woo-YongORCID,Seo Dong-WookORCID

Abstract

The multilevel fast multipole algorithm (MLFMA) using K-means clustering to accelerate electromagnetic scattering analysis for large complex targets is presented. By replacing the regular cube grouping with the K-means clustering, the addition theorem is more accurately approximated. The convergence rate of an iterative solver is thus improved significantly. However, irregular centroid locations as a result of the K-means clustering increase the amount of explicit transfer function calculations, compared with the regular cubes. In the MLFMA, a multilevel hierarchical structure is applied to the finite multipole method (FMM) to reduce transfer function calculations. Therefore, the MLFMA is suitable for applying K-means clustering. Simulation results with both canonical and realistic targets show an improvement in the computation time of the proposed algorithm.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Vehicle Detection Based on Information Fusion of mmWave Radar and Monocular Vision;Electronics;2023-06-27

2. CBF Computation Acceleration of CBFM Using k-Means Clustering Algorithm;The Journal of Korean Institute of Electromagnetic Engineering and Science;2022-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3