An On-Chip Learning Method for Neuromorphic Systems Based on Non-Ideal Synapse Devices

Author:

Lee Jae-EunORCID,Lee Chuljun,Kim Dong-Wook,Lee Daeseok,Seo Young-HoORCID

Abstract

In this paper, we propose an on-chip learning method that can overcome the poor characteristics of pre-developed practical synaptic devices, thereby increasing the accuracy of the neural network based on the neuromorphic system. The fabricated synaptic devices, based on Pr1−xCaxMnO3, LiCoO2, and TiOx, inherently suffer from undesirable characteristics, such as nonlinearity, discontinuities, and asymmetric conductance responses, which degrade the neuromorphic system performance. To address these limitations, we have proposed a conductance-based linear weighted quantization method, which controls conductance changes, and trained a neural network to predict the handwritten digits from the standard database MNIST. Furthermore, we quantitatively considered the non-ideal case, to ensure reliability by limiting the conductance level to that which synaptic devices can practically accept. Based on this proposed learning method, we significantly improved the neuromorphic system, without any hardware modifications to the synaptic devices or neuromorphic systems. Thus, the results emphatically show that, even for devices with poor synaptic characteristics, the neuromorphic system performance can be improved.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3