BugMiner: Mining the Hard-to-Reach Software Vulnerabilities through the Target-Oriented Hybrid Fuzzer

Author:

Rustamov FayozbekORCID,Kim Juhwan,Yu Jihyeon,Kim Hyunwook,Yun JoobeomORCID

Abstract

Greybox Fuzzing is the most reliable and essentially powerful technique for automated software testing. Notwithstanding, a majority of greybox fuzzers are not effective in directed fuzzing, for example, towards complicated patches, as well as towards suspicious and critical sites. To overcome these limitations of greybox fuzzers, Directed Greybox Fuzzing (DGF) approaches were recently proposed. Current DGFs are powerful and efficient approaches that can compete with Coverage-Based Fuzzers. Nevertheless, DGFs neglect to accomplish stability between usefulness and proficiency, and random mutations make it hard to handle complex paths. To alleviate this problem, we propose an innovative methodology, a target-oriented hybrid fuzzing tool that utilizes a fuzzer and dynamic symbolic execution (also referred to as a concolic execution) engine. Our proposed method aims to generate inputs that can quickly reach the target sites in each sequence and trigger potential hard-to-reach vulnerabilities in the program binary. Specifically, to dive deep into the target binary, we designed a proposed technique named BugMiner, and to demonstrate the capability of our implementation, we evaluated it comprehensively on bug hunting and crash reproduction. Evaluation results showed that our proposed implementation could not only trigger hard-to-reach bugs 3.1, 4.3, 2.9, 2.0, 1.8, and 1.9 times faster than Hawkeye, AFLGo, AFL, AFLFast, QSYM, and ParmeSan respectively but also scale to several real-world programs.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference60 articles.

1. 2019 Vulnerability Statistics Reporthttps://www.edgescan.com/wp-content/uploads/2019/02/edgescan-Vulnerability-Stats-Report-2019.pdf

2. Internet Security Glossaryhttps://tools.ietf.org/html/rfc2828

3. Fuzzing for Security Testing and Quality Assurance;Takanen,2018

4. The Art, Science, and Engineering of Fuzzing: A Survey

5. Project Springfieldhttps://www.microsoft.com/en-us/security-risk-detection/

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3