Design of a Compact and Highly Efficient Energy Harvester System Suitable for Battery-Less Low Cost On-Board Unit Applications

Author:

Collodi GiovanniORCID,Maddio StefanoORCID,Pelosi Giuseppe

Abstract

This study addresses the general problem regarding the power supply in specific on-board unit (OBUs) solutions. In detail, this paper refers to a subset of the so-called electronic toll collection (ETC) applications such as assets control and vehicle identification, where simplicity, low costs, and maximum compactness represent the most important features. In this context, the next generation of OBUs, developed specifically with reference to such applications, will involve energy harvester-based battery-less techniques. Previous studies have mainly concentrated on performance optimization by achieving maximum energy transmission to the OBUs. This study discusses a technique suitable for both maximizing performance and minimizing the dimensions of transponder energy harvesters suitable for assets control and vehicle identification operating at 5.8 GHz. The technique assumes that an optimal source impedance exists that maximizes the energy transfer to the transponder, thus enabling its power supply in a battery-less configuration. We discuss a solution based on a compact patch antenna designed to exhibit this optimal source impedance to the RF-to-DC rectifier. This approach avoids the use of a lossy matching network. For the sake of comparison, the same function is compared with an equivalent development, which includes the interstage matching network between the antenna and the RF-to-DC rectifier. We introduce experimental results demonstrating that the ultracompact energy harvester optimized at −5 dBm of impinging power is capable of increasing both the charge current and energy efficiency from 340 to 450 μA and from 37% to 47%, respectively.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3