Improving Object Detection Quality by Incorporating Global Contexts via Self-Attention

Author:

Lee Donghyeon,Kim Joonyoung,Jung Kyomin

Abstract

Fully convolutional structures provide feature maps acquiring local contexts of an image by only stacking numerous convolutional layers. These structures are known to be effective in modern state-of-the-art object detectors such as Faster R-CNN and SSD to find objects from local contexts. However, the quality of object detectors can be further improved by incorporating global contexts when some ambiguous objects should be identified by surrounding objects or background. In this paper, we introduce a self-attention module for object detectors to incorporate global contexts. More specifically, our self-attention module allows the feature extractor to compute feature maps with global contexts by the self-attention mechanism. Our self-attention module computes relationships among all elements in the feature maps, and then blends the feature maps considering the computed relationships. Therefore, this module can capture long-range relationships among objects or backgrounds, which is difficult for fully convolutional structures. Furthermore, our proposed module is not limited to any specific object detectors, and it can be applied to any CNN-based model for any computer vision task. In the experimental results on the object detection task, our method shows remarkable gains in average precision (AP) compared to popular models that have fully convolutional structures. In particular, compared to Faster R-CNN with the ResNet-50 backbone, our module applied to the same backbone achieved +4.0 AP gains without the bells and whistles. In image semantic segmentation and panoptic segmentation tasks, our module improved the performance in all metrics used for each task.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3