Rooftop Solar PV Penetration Impacts on Distribution Network and Further Growth Factors—A Comprehensive Review

Author:

Uzum Busra,Onen AhmetORCID,Hasanien Hany M.ORCID,Muyeen S. M.ORCID

Abstract

In order to meet the electricity needs of domestic or commercial buildings, solar energy is more attractive than other renewable energy sources in terms of its simplicity of installation, less dependence on the field and its economy. It is possible to extract solar energy from photovoltaic (PV) including rooftop, ground-mounted, and building integrated PV systems. Interest in rooftop PV system applications has increased in recent years due to simple installation and not occupying an external area. However, the negative effects of increased PV penetration on the distribution system are troublesome. The power loss, reverse power flow (RPF), voltage fluctuations, voltage unbalance, are causing voltage quality problems in the power network. On the other hand, variations in system frequency, power factor, and harmonics are affecting the power quality. The excessive PV penetration also the root cause of voltage stability and has an adverse effect on protection system. The aim of this article is to extensively examines the impacts of rooftop PV on distribution network and evaluate possible solution methods in terms of the voltage quality, power quality, system protection and system stability. Moreover, it is to present a comparison of the advantages/disadvantages of the solution methods discussed, and an examination of the solution methods in which artificial intelligence, deep learning and machine learning based optimization and techniques are discussed with common methods.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3