Dielectric-Loaded Horn Antenna Design and Simulation Using the Metamaterial Method

Author:

Zhang Bowen1ORCID,Du Wei2,Liu Nengwu1,Fu Guang1

Affiliation:

1. National Key Laboratory of Antennas and Microwave Technology, Xidian University, Xi’an 710065, China

2. Northwest Regional Air Traffic Management Bureau, CAAC, Xi’an 710082, China

Abstract

In this paper, we propose the design and simulation of a dielectric horn antenna using the metamaterial method; this antenna has a double-layer dielectric waveguide transmission structure. With the continuous development of microwave feed sources, the traditional waveguide systems are no longer able to meet today’s antenna requirements. Consequently, dielectric-loading technology is gradually being applied to design horns. A key advantage of this antenna is its significantly expanded bandwidth of 163.3%. Furthermore, when compared to ridge horns, this dielectric-loaded horn demonstrates superior radiation properties across the entire frequency band, including aperture efficiency (95% in the L band, 65.4% in the S band, 41.5% in the C band, and 28.7% in the X band) and cross-polarization isolation (≥51.6 dB). In addition, before researching the theory of dielectric-loading technology, the modes of the horns should be analyzed. This helps us to better control the hybrid mode. The metamaterial method was applied to achieve stable dielectric properties. We finally conducted experiments on the antenna to validate the relevant theories and feasibility.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3