Multi-Scale Residual Spectral–Spatial Attention Combined with Improved Transformer for Hyperspectral Image Classification

Author:

Wang Aili1ORCID,Zhang Kang1,Wu Haibin1ORCID,Iwahori Yuji2ORCID,Chen Haisong3

Affiliation:

1. Heilongjiang Province Key Laboratory of Laser Spectroscopy Technology and Application, Harbin University of Science and Technology, Harbin 150080, China

2. Computer Science, Chubu University, Kasugai 487-8501, Japan

3. School of Undergraduate Education, Shenzhen Polytechnic University, Shenzhen 518115, China

Abstract

Aiming to solve the problems of different spectral bands and spatial pixels contributing differently to hyperspectral image (HSI) classification, and sparse connectivity restricting the convolutional neural network to a globally dependent capture, we propose a HSI classification model combined with multi-scale residual spectral–spatial attention and an improved transformer in this paper. First, in order to efficiently highlight discriminative spectral–spatial information, we propose a multi-scale residual spectral–spatial feature extraction module that preserves the multi-scale information in a two-layer cascade structure, and the spectral–spatial features are refined by residual spectral–spatial attention for the feature-learning stage. In addition, to further capture the sequential spectral relationships, we combine the advantages of Cross-Attention and Re-Attention to alleviate computational burden and attention collapse issues, and propose the Cross-Re-Attention mechanism to achieve an improved transformer, which can efficiently alleviate the heavy memory footprint and huge computational burden of the model. The experimental results show that the overall accuracy of the proposed model in this paper can reach 98.71%, 99.33%, and 99.72% for Indiana Pines, Kennedy Space Center, and XuZhou datasets, respectively. The proposed method was verified to have high accuracy and effectiveness compared to the state-of-the-art models, which shows that the concept of the hybrid architecture opens a new window for HSI classification.

Funder

Key Research and Development Plan Project of Heilongjiang

Natural Science Foundation of Heilongjiang Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3