Energy Efficient Graph-Based Hybrid Learning for Speech Emotion Recognition on Humanoid Robot

Author:

Wu Haowen1,Xu Hanyue12ORCID,Seng Kah Phooi134,Chen Jieli12,Ang Li Minn4

Affiliation:

1. School of AI and Advanced Computing, Xi’an Jiaotong-Liverpool University, Suzhou 215000, China

2. Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, UK

3. School of Computer Science, Queensland University of Technology, Brisbane, QLD 4000, Australia

4. School of Science, Technology and Engineering, University of the Sunshine Coast, Petrie, QLD 4502, Australia

Abstract

This paper presents a novel deep graph-based learning technique for speech emotion recognition which has been specifically tailored for energy efficient deployment within humanoid robots. Our methodology represents a fusion of scalable graph representations, rooted in the foundational principles of graph signal processing theories. By delving into the utilization of cycle or line graphs as fundamental constituents shaping a robust Graph Convolution Network (GCN)-based architecture, we propose an approach which allows the capture of relationships between speech signals to decode intricate emotional patterns and responses. Our methodology is validated and benchmarked against established databases such as IEMOCAP and MSP-IMPROV. Our model outperforms standard GCNs and prevalent deep graph architectures, demonstrating performance levels that align with state-of-the-art methodologies. Notably, our model achieves this feat while significantly reducing the number of learnable parameters, thereby increasing computational efficiency and bolstering its suitability for resource-constrained environments. This proposed energy-efficient graph-based hybrid learning methodology is applied towards multimodal emotion recognition within humanoid robots. Its capacity to deliver competitive performance while streamlining computational complexity and energy efficiency represents a novel approach in evolving emotion recognition systems, catering to diverse real-world applications where precision in emotion recognition within humanoid robots stands as a pivotal requisite.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3