Federated Learning Incentive Mechanism Setting in UAV-Assisted Space–Terrestrial Integration Networks

Author:

Zhu Chun1ORCID,Sui Mengqi2,Zhao Haitao3,Chen Keqi2ORCID,Zhang Tianyu2,Bao Chongyu4

Affiliation:

1. College of Science, Nanjing University of Posts and Telecommunications, Nanjing 210003, China

2. School of Communication and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China

3. College of Internet of Things, Nanjing University of Posts and Telecommunications, Nanjing 210003, China

4. Portland Institute, Nanjing University of Posts and Telecommunications, Nanjing 210003, China

Abstract

The UAV-assisted space–terrestrial integrated network provides extensive coverage and high flexibility in communication services. UAVs and ground terminals collaborate to train models and provide services. In order to protect data privacy, federated learning is widely used. However, the participation of UAVs and ground terminals is not gratuitous, and reasonable incentives for federated learning need to be set up to encourage their participation. To address the above issues, this paper proposes a federated reliable incentive mechanism based on hierarchical reinforcement learning. The mechanism allocates inter-round incentives at the upper level to ensure the maximisation of the server’s utility, and performs inter-client incentive allocation at the lower level to ensure the minimisation of each round’s latency. The reasonable incentive allocation enables the central server to achieve higher model training accuracy under the limited incentive budget, which reduces the cost of model training. At the same time, an attack detection mechanism is implemented to identify malicious clients participating in federated learning, preventing their involvement in aggregation and revoking their incentives. This better ensures the security of model training. Finally, we conducted experiments on Fmnist, and the results indicate that this method effectively improves the accuracy and security of model training.

Funder

National Natural Science Foundation of China

Science and Technology Innovation 2030—Major Project

Natural Science Foundation on Frontier Leading Technology Basic Research Project of Jiangsu

Jiangsu Natural Science Foundation for Distinguished Young Scholars

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3