Detection of DoS Attacks for IoT in Information-Centric Networks Using Machine Learning: Opportunities, Challenges, and Future Research Directions

Author:

Bukhowah Rawan1,Aljughaiman Ahmed1ORCID,Rahman M. M. Hafizur1ORCID

Affiliation:

1. Department of Computer Networks and Communications, College of Computer Sciences and Information Technology, King Faisal University, Al-Ahsa 31982, Saudi Arabia

Abstract

The Internet of Things (IoT) is a rapidly growing network that shares information over the Internet via interconnected devices. In addition, this network has led to new security challenges in recent years. One of the biggest challenges is the impact of denial-of-service (DoS) attacks on the IoT. The Information-Centric Network (ICN) infrastructure is a critical component of the IoT. The ICN has gained recognition as a promising networking solution for the IoT by supporting IoT devices to be able to communicate and exchange data with each other over the Internet. Moreover, the ICN provides easy access and straightforward security to IoT content. However, the integration of IoT devices into the ICN introduces new security challenges, particularly in the form of DoS attacks. These attacks aim to disrupt or disable the normal operation of the ICN, potentially leading to severe consequences for IoT applications. Machine learning (ML) is a powerful technology. This paper proposes a new approach for developing a robust and efficient solution for detecting DoS attacks in ICN-IoT networks using ML technology. ML is a subset of artificial intelligence (AI) that focuses on the development of algorithms. While several ML algorithms have been explored in the literature, including neural networks, decision trees (DTs), clustering algorithms, XGBoost, J48, multilayer perceptron (MLP) with backpropagation (BP), deep neural networks (DNNs), MLP-BP, RBF-PSO, RBF-JAYA, and RBF-TLBO, researchers compare these detection approaches using classification metrics such as accuracy. This classification metric indicates that SVM, RF, and KNN demonstrate superior performance compared to other alternatives. The proposed approach was carried out on the NDN architecture because, based on our findings, it is the most used one and has a high percentage of various types of cyberattacks. The proposed approach can be evaluated using an ndnSIM simulation and a synthetic dataset for detecting DoS attacks in ICN-IoT networks using ML algorithms.

Funder

Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3