Autonomous Threat Response at the Edge Processing Level in the Industrial Internet of Things

Author:

Czeczot Grzegorz1ORCID,Rojek Izabela1ORCID,Mikołajewski Dariusz1ORCID

Affiliation:

1. Faculty of Computer Science, Kazimierz Wielki University, 85-064 Bydgoszcz, Poland

Abstract

Industrial Internet of Things (IIoT) technology, as a subset of the Internet of Things (IoT) in the concept of Industry 4.0 and, in the future, 5.0, will face the challenge of streamlining the way huge amounts of data are processed by the modules that collect the data and those that analyse the data. Given the key features of these analytics, such as reducing the cost of building massive data centres and finding the most efficient way to process data flowing from hundreds of nodes simultaneously, intermediary devices are increasingly being used in this process. Fog and edge devices are hardware devices designed to pre-analyse terabytes of data in a stream and decide in realtime which data to send for final analysis, without having to send the data to a central processing unit in huge local data centres or to an expensive cloud. As the number of nodes sending data for analysis via collection and processing devices increases, so does the risk of data streams being intercepted. There is also an increased risk of attacks on this sensitive infrastructure. Maintaining the integrity of this infrastructure is important, and the ability to analyse all data is a resource that must be protected. The aim of this paper is to address the problem of autonomous threat detection and response at the interface of sensors, edge devices, cloud devices with historical data, and finally during the data collection process in data centres. Ultimately, we would like to present a machine learning algorithm with reinforcements adapted to detect threats and immediately isolate infected nests.

Funder

Kazimierz Wielki University

Publisher

MDPI AG

Reference62 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Federated Learning for Collaborative Cyber Defense;Advances in Digital Crime, Forensics, and Cyber Terrorism;2024-09-13

2. Integrating CNN-LSTM Networks with Statistical Filtering Techniques for Intelligent IoT Intrusion Detection;2024 8th International Conference on Smart Cities, Internet of Things and Applications (SCIoT);2024-05-14

3. DCGFuzz: An Embedded Firmware Security Analysis Method with Dynamically Co-Directional Guidance Fuzzing;Electronics;2024-04-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3