Enhancing Computational Efficiency in Event-Based Optical Camera Communication Using N-Pulse Modulation

Author:

Aranda Jaime1ORCID,Guerra Victor2ORCID,Rabadan Jose1ORCID,Perez-Jimenez Rafael1ORCID

Affiliation:

1. Institute for Technological Development and Innovation in Communications, Universidad de Las Palmas de Gran Canaria, 35001 Las Palmas, Spain

2. Pi Lighting Sarl, 1950 Sion, Switzerland

Abstract

Event cameras are bio-inspired devices that have revolutionized the acquisition of visual information by mimicking the neural architecture of the eye. These cameras respond asynchronously to changes in scene illumination at the pixel level, providing high-precision time information with low latency, typically in the order of microseconds. In this work, we experimentally evaluate an optical camera communication (OCC) link using an LED-based transmitter and an event camera as the receiver. We propose n-pulse modulation to encode data, adapting the system to the specific characteristics and operational principles of event cameras. The proposed scheme significantly reduces the demodulation complexity compared to other alternatives found in the literature. Furthermore, a set of experiments considering different camera bias sensitivities, encoding duty cycles, and LED radiant fluxes were carried out. The results showed that the BER performance was strongly dependent on the received optical power and the bias sensitivity. In addition, duty cycles between 0.3 and 0.7 at a 200 Hz transmission frequency presented the best performance, with a BER below 1.25×10−4, which is under the forward error correction (FEC) limit. This work showcases the cutting-edge capabilities of event-camera-based OCC technology and contributes to the ongoing revolution in optical wireless communication (OWC).

Funder

Spanish Research Agency

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3