Optimizing CNN Hardware Acceleration with Configurable Vector Units and Feature Layout Strategies

Author:

He Jinzhong123ORCID,Zhang Ming123ORCID,Xu Jian123,Yu Lina123,Li Weijun123

Affiliation:

1. AnnLab, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China

2. College of Materials Science and Opto-Electronic Technology & School of Integrated Circuits, University of Chinese Academy of Sciences, Beijing 100049, China

3. Beijing Key Laboratory of Semiconductor Neural Network Intelligent Sensing and Computing Technology, Beijing 100083, China

Abstract

Convolutional neural network (CNN) hardware acceleration is critical to improve the performance and facilitate the deployment of CNNs in edge applications. Due to its efficiency and simplicity, channel group parallelism has become a popular method for CNN hardware acceleration. However, when processing data involving small channels, there will be a mismatch between feature data and computing units, resulting in a low utilization of the computing units. When processing the middle layer of the convolutional neural network, the mismatch between the feature-usage order and the feature-loading order leads to a low input feature cache hit rate. To address these challenges, this paper proposes an innovative method inspired by data reordering technology, aiming to achieve CNN hardware acceleration that reuses the same multiplier resources. This method focuses on transforming the hardware acceleration process into feature organization, feature block scheduling and allocation, and feature calculation subtasks to ensure the efficient mapping of continuous loading and the calculation of feature data. Specifically, this paper introduces a convolutional algorithm mapping strategy and a configurable vector operation unit to enhance multiplier utilization for different feature map sizes and channel numbers. In addition, an off-chip address mapping and on-chip cache management mechanism is proposed to effectively improve the feature access efficiency and on-chip feature cache hit rate. Furthermore, a configurable feature block scheduling policy is proposed to strike a balance between weight reuse and feature writeback pressure. Experimental results demonstrate the effectiveness of this method. When using 512 multipliers and accelerating VGG16 at 100 MHz, the actual computing performance reaches 102.3 giga operations per second (GOPS). Compared with other CNN hardware acceleration methods, the average computing array utilization is as high as 99.88% and the computing density is higher.

Funder

Key-Area Research and Development Program of Guangdong Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3