Multisource Sparse Inversion Localization with Long-Distance Mobile Sensors

Author:

Ren Jinyang1ORCID,Qi Peihan1ORCID,Li Chenxi1ORCID,Zhu Panpan1,Li Zan2ORCID

Affiliation:

1. State Key Laboratory of Integrated Service Networks, Xidian University, Xi’an 710071, China

2. School of Telecommunications Engineering, Xidian University, Xi’an 710071, China

Abstract

To address the threat posed by unknown signal sources within Mobile Crowd Sensing (MCS) systems to system stability and to realize effective localization of unknown sources in long-distance scenarios, this paper proposes a unilateral branch ratio decision algorithm (UBRD). This approach addresses the inadequacies of traditional sparse localization algorithms in long-distance positioning by introducing a time–frequency domain composite block sparse localization model. Given the complexity of localizing unknown sources, a unilateral branch ratio decision scheme is devised. This scheme derives decision thresholds through the statistical characteristics of branch residual ratios, enabling adaptive control over iterative processes and facilitating multisource localization under conditions of remote blind sparsity. Simulation results indicate that the proposed model and algorithm, compared to classic sparse localization schemes, are more suitable for long-distance localization scenarios, demonstrating robust performance in complex situations like blind sparsity, thereby offering broader scenario adaptability.

Funder

National Basic Scientific Research of China

National Natural Science Foundation of China

Publisher

MDPI AG

Reference30 articles.

1. A survey on mobile crowdsensing systems: Challenges, solutions, and opportunities;Capponi;IEEE Commun. Surv. Tutor.,2019

2. Reliable and privacy-preserving truth discovery for mobile crowdsensing systems;Zhang;IEEE Trans. Dependable Secur. Comput.,2019

3. Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing;Zhang;IEEE Trans. Dependable Secur. Comput.,2022

4. A passive localization algorithm and its accuracy analysis;Friedlander;IEEE J. Ocean. Eng.,1987

5. Optimizing federated learning in distributed industrial IoT: A multi-agent approach;Zhang;IEEE J. Sel. Areas Commun.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3