Promoting Unified Generative Framework with Descriptive Prompts for Joint Multi-Intent Detection and Slot Filling

Author:

Ma Zhiyuan123ORCID,Qin Jiwei1,Pan Meiqi1,Tang Song1,Mi Jinpeng1,Liu Dan1

Affiliation:

1. Institute of Machine Intelligence, University of Shanghai for Science and Technology, Shanghai 200093, China

2. School of Intelligent Emergency Management, University of Shanghai for Science and Technology, Shanghai 200093, China

3. State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210093, China

Abstract

Natural language understanding is a crucial aspect of task-oriented dialogue systems, encompassing intent detection (ID) and slot filling (SF). Conventional approaches for ID and SF solve the problems in a separate manners, while recent studies are now leaning toward joint modeling to tackle multi-intent detection and SF. Although the advancements in prompt learning offer a unified framework for ID and SF, current prompt-based methods fail to fully exploit the semantics of intent and slot labels. Additionally, the potential of using prompt learning to model the correlation between ID and SF in multi-intent scenarios remains unexplored. To address the issue, we propose a text-generative framework that unifies ID and SF. The prompt templates are constructed with label semantical descriptions. Moreover, we introduce an auxiliary task to explicitly capture the correlation between ID and SF. The experimental results on two benchmark datasets show that our method achieves an overall accuracy improvement of 0.4–1.5% in a full-data scenario and 1.4–2.7% in a few-shot setting compared with a prior method, establishing it as a new state-of-the-art approach.

Funder

State Key Laboratory for Novel Software Technology, Nanjing University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3