Graphical Representation of UWF-ZeekData22 Using Memgraph

Author:

Bagui Sikha S.1ORCID,Mink Dustin1ORCID,Bagui Subhash C.2ORCID,Sung Dae Hyun1,Mahmud Farooq1

Affiliation:

1. Department of Computer Science, University of West Florida, Pensacola, FL 32514, USA

2. Department of Mathematics and Statistics, University of West Florida, Pensacola, FL 32514, USA

Abstract

This work uses Memgraph, an open-source graph data platform, to analyze, visualize, and apply graph machine learning techniques to detect cybersecurity attack tactics in a newly created Zeek Conn log dataset, UWF-ZeekData22, generated in The University of West Florida’s cyber simulation environment. The dataset is transformed to a representative graph, and the graph’s properties studied in this paper are PageRank, degree, bridge, weakly connected components, node and edge cardinality, and path length. Node classification is used to predict the connection between IP addresses and ports as a form of attack tactic or non-attack tactic in the MITRE framework, implemented using Memgraph’s graph neural networks. Multi-classification is performed using the attack tactics, and three different graph neural network models are compared. Using only three graph features, in-degree, out-degree, and PageRank, Memgraph’s GATJK model performs the best, with source node classification accuracy of 98.51% and destination node classification accuracy of 97.85%.

Funder

National Security Agency

Publisher

MDPI AG

Reference30 articles.

1. Howarth, J. (2023, June 13). The Ultimate List of Cyber Attack Stats. Exploding Topics. Available online: https://explodingtopics.com/blog/cybersecurity-stats.

2. (2023, June 10). Memgraph. “Memgraph Documentation”. Memgraph Docs. Available online: https://memgraph.com/docs.

3. (2023, August 02). UWF-ZeekData22 Dataset. Available online: https://datasets.uwf.edu.

4. Bagui, S.S., Mink, D., Bagui, S.C., Ghosh, T., Plenkers, R., McElroy, T., Dulaney, S., and Shabanali, S. (2023). Introducing UWF-ZeekData22: A Comprehensive Network Traffic Dataset Based on the MITRE ATT&CK Framework. Data, 8.

5. (2023, October 20). Neo4j, vs. Memgraph—How to Choose a Graph Database?. Available online: https://memgraph.com/blog/neo4j-vs-memgraph.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3