Abstract
Data dissemination is among the key functions of Vehicular Ad-Hoc Networks (VANETs), and it has attracted much attention in the past decade. We address distributed, efficient, and scalable algorithms in the context of VANETs adopting the paradigm. We introduce an epidemic algorithm for message dissemination. The algorithm, named EPIC, is based on few assumptions, and it is very simple to implement. It uses only local information at each node, broadcast communications, and timers. EPIC is designed with the goal to reach the highest number of vehicles “infected” by the message, without overloading the network. It is tested on different scenarios taken from VANET simulations based on real urban environments (Manhattan, Cologne, Luxembourg). We compare our algorithm with a standard-based solution that exploits the contention-based forwarding component of the ETSI GeoNetworking protocol. On the other hand, we adapt literature based on a connected cover set to assess the near-optimality of our proposed algorithm and gain insight into the best selection of relay nodes as the size of the graph over which messages are spread scales up. The performance evaluation shows the behavior of EPIC and allows us to optimize the protocol parameters to minimize delay and overhead.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献