Quantitative Estimation of Differentiated Mental Fatigue between Self-Rising Transfer and Multiple Welfare Robots-Assisted Rising Transfer

Author:

Zhao DonghuiORCID,Yang Junyou,Bai Dianchun,Okoye Martin OnyekaORCID,Hiroshi Yokoi

Abstract

The multi-robot system (MRS) and relevant control strategy are a potential and effective approach to assist people with weak motion capability for various forms of assisted living. However, the rising transfer, a frequent and strenuous behavior, and its human-robot interaction (HRI) process with MRS, especially mental state, has never been researched, although it directly determines the user experience and security. In this paper, Functional Near-InfraRed Spectroscopy (fNIRS), a brain imaging technique to perform a continuous measure of the mental state, is introduced to monitor the user’s mental fatigue when implementing a behavior transfer in two difficulty levels assisted by multiple welfare-robots. Twenty-five subjects performed self-rising transfer and multiple welfare robots-assisted rising transfer. After removing physiological noises, six features of oxygenated and deoxygenated hemoglobin (HbO and HbR, respectively) features, which included the mean, slope, variance, peak, skewness, and kurtosis, were calculated. To maximize the distinction of fNIRS between self-rising transfer and assisted-rising transfer (multiple welfare robots assisted rising transfer), the optimal statistical feature combination for linear discriminant analysis (LDA) classification was proposed. In addition, the classification accuracy is regarded as a standard to quantify the difference of mental states between two contrasting behaviors. By fitting the index, we established the mental fatigue model that grows exponentially as the workload increases. Finally, the mental fatigue model is applied to guide the nursing mode of caregivers and the control strategy of the MRS. Our findings disclose that the combinations containing mean and peak values significantly yielded higher classification accuracies for both HbO and HbR than the entire other combinations did, across all the subjects. They effectively quantify mental fatigue to provide an evaluation with a theoretical foundation for enhancing the user experience and optimizing the control strategy of MRS.

Funder

Natural Science Foundation of Liaoning Province

Distinguished Professor of Liaoning Province

Shenyang Science and Technology Bureau

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3