Speed Control Optimization for Autonomous Vehicles with Metaheuristics

Author:

Naranjo José EugenioORCID,Serradilla Francisco,Nashashibi Fawzi

Abstract

The development of speed controllers under execution in autonomous vehicles within their dynamic driving task (DDT) is a traditional research area from the point of view of control techniques. In this regard, Proportional – Integral – Derivative (PID) controllers are the most widely used in order to meet the requirements of cruise control. However, fine tuning of the parameters associated with this type of controller can be complex, especially if it is intended to optimize them and reduce their characteristic errors. The objective of the work described in this paper is to evaluate the capacity of several metaheuristics for the adjustment of the parameters Kp, 1/Ti, and 1/Td of a PID controller to regulate the speed of a vehicle. To do this, an adjustment error function has been established from a linear combination of classic estimators of the goodness of the controller, such as overshoot, settling time (ts), steady-state error (ess), and the number of changes of sign of the signal (d). The error obtained when applying the controller has also been compared to a computational model of the vehicle after estimating the parameters Kp, Ki, and Kd, both for a setpoint sequence used in the adjustment of the system parameters and for a sequence not used during the adjustment, and therefore unknown by the system. The main novelty of the paper is to propose a new global error function, a function that enables the use of heuristic optimization methods for PID tuning. This optimization has been carried out by using three methods: genetic algorithms (GA), memetics algorithms (MA), and mesh adaptive direct search (MADS). The results of the application of the optimization methods using the proposed metric show that the accuracy of the PID controller is improved, compared with the classical optimization based on classical methods like the integral absolute error (IAE) or similar metrics, reducing oscillatory behaviours as well as minimizing the analysed performance indexes.

Funder

European Commission

Comunidad de Madrid

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Blood Glucose Regulation in Type 1 Diabetes Through Optimized Nonlinear Control Strategies;2023 IEEE International Conference on Metrology for eXtended Reality, Artificial Intelligence and Neural Engineering (MetroXRAINE);2023-10-25

2. Research into the Beetle Antennae Optimization-Based PID Servo System Control of an Industrial Robot;Mathematics;2023-09-25

3. Autonomous Robot System for Speed Tests of Vehicle;2023 42nd Chinese Control Conference (CCC);2023-07-24

4. Machine-vision-based Online Self-optimizing Control System for Line Marking Machines;Studies in Informatics and Control;2023-06-28

5. Research on path tracking control of unmanned vehicle;Journal of Physics: Conference Series;2023-04-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3