FQ-AGO: Fuzzy Logic Q-Learning Based Asymmetric Link Aware and Geographic Opportunistic Routing Scheme for MANETs

Author:

Alshehri AliORCID,Badawy Abdel-Hameed A.ORCID,Huang Hong

Abstract

The proliferation of mobile and IoT devices, coupled with the advances in the wireless communication capabilities of these devices, have urged the need for novel communication paradigms for such heterogeneous hybrid networks. Researchers have proposed opportunistic routing as a means to leverage the potentials offered by such heterogeneous networks. While several proposals for multiple opportunistic routing protocols exist, only a few have explored fuzzy logic to evaluate wireless links status in the network to construct stable and faster paths towards the destinations. We propose FQ-AGO, a novel Fuzzy Logic Q-learning Based Asymmetric Link Aware and Geographic Opportunistic Routing scheme that leverages the presence of long-range transmission links to assign forwarding candidates towards a given destination. The proposed routing scheme utilizes fuzzy logic to evaluate whether a wireless link is useful or not by capturing multiple network metrics, the available bandwidth, link quality, node transmission power, and distance progress. Based on the fuzzy logic evaluation, the proposed routing scheme employs a Q-learning algorithm to select the best candidate set toward the destination. We implemented FQ-AGO on the ns-3 simulator and compared the performance of the proposed routing scheme with three other relevant protocols: AODV, DSDV, and GOR. For precise analysis, we considered various network metrics to compare the performance of the routing protocols. The simulation result validates our analysis and demonstrates remarkable performance improvements in terms of total network throughput, packet delivery ration, and end-to-end delay. FQ-AGO achieves up to 15%, 50%, and 45% higher throughput compared to DSDV, AODV, and GOR, respectively. Meanwhile, FQ-AGO reduces by 50% the end-to-end latency and the average number of hop-count.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3